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Background: The discrete Fourier transform (DFT) is often used as a spectral estimator for analysis of
complex fractionated atrial electrograms (CFAE) acquired during atrial fibrillation (AF). However, time
resolution can be unsatisfactory, as the frequency resolution is proportional to rate/time interval. In this
study we compared the DFT to a new spectral estimator with improved time-frequency resolution.
Method: Recently, a novel spectral estimator (NSE) based upon signal averaging was derived and
implemented computationally. The NSE is similar to the DFT in that both estimators model the
autocorrelation function to form the power spectrum. However, as derived in this study, NSE frequency
resolution is proportional to rate/period2 and thus unlike the DFT, is not directly dependent on the
window length. We hypothesized that the NSE would provide improved time resolution while
maintaining satisfactory frequency resolution for computation of CFAE spectral parameters. Window
lengths of 8 s, 4 s, 2 s, 1 s, and 0.5 s were used for analysis. Two criteria gauged estimator performance.
Firstly, a periodic electrogram pattern with phase jitter was embedded in interference. The error in
detecting the frequency of the periodic pattern was determined. Secondly, significant differences in
spectral parameters for paroxysmal versus persistent AF data, which have known dissimilarities, were
determined using the DFT versus NSE methods. The parameters measured were the dominant amplitude,
dominant frequency, and mean spectral profile.
Results: At all time resolutions, the error in detecting the frequency of the repeating electrogram pattern
was less for NSE than for DFT (po0.001). The DFT was accurate to 2 s time resolution/0.5 Hz frequency
resolution, while the NSE was accurate to 0.5 s time resolution/0.05 Hz frequency resolution. At all time
resolutions, significant differences in the dominant amplitude spectral parameter for paroxysmal versus
persistent CFAE were greater using NSE than DFT (po0.0001). For three of five time resolutions, the NSE
had greater significant differences than DFT for discriminating the dominant frequency and mean
spectral profile parameters between AF types.
Conclusions: The results suggest that the NSE has improved performance versus DFT for measurement of
CFAE spectral properties.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Complex fractionated atrial electrograms (CFAE) are generally
recorded with a bipolar contact electrode, and contain either
multiple deflections without interruption, a baseline perturbation
with continuous deflection, or a cycle length r120 ms that
include isoelectric intervals between deflections [1]. Recently it
has been suggested that CFAE can be useful to detect and localize
arrhythmogenic regions in atrial fibrillation (AF) patients, with
the potential to guide radiofrequency catheter ablation for pre-
vention of arrhythmia recurrence [1,2]. Alternatively, widespread
ablation of CFAE may have a debulking effect, reducing the overall

arrhythmia substrate [3]. These conflicting possibilities suggest the
need to characterize more completely the morphologic and
frequency content of CFAE. In patients with short paroxysmal
episodes of AF, CFAE morphology as measured by the amplitude,
slope, and width of electrogram deflections, and by linear predic-
tion, tends to be highly variable, as compared with electrograms
acquired from patients with longstanding persistent AF [4,5].
Similarly, the frequency spectra of CFAE from paroxysmal AF
patients appear more random as compared with CFAE from
persistent AF [6]. Although both time and frequency domain
methods have therefore been helpful to characterize the AF
substrate, they do not necessarily have equal robustness. When
electrogram amplitude varies randomly, time-domain methods
lose performance, while frequency-domain methods remain stable
[7]. Therefore spectral analysis may have special efficacy for
characterizing these signals.
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Recent work has suggested that ablation of high dominant
frequency (DF) areas may be assistive in preventing AF reinduction
in both paroxysmal and persistent AF patients [8]. Although it is
desirable to measure high DF components in order to target
arrhythmogenic regions, such components are often quasi-periodic
and exhibit phase jitter and drift [9]. Furthermore, there can be
subtle changes in frequency, on the order of 0.1 Hz, depending upon
recording location and type of intervention [10,11]. The frequency
resolution of the discrete Fourier transform (DFT), commonly used
for analysis of atrial electrograms, is dependent upon rate/time
interval. For the 1 kHz sampling rate and 8 s interval that is typical
for analysis of atrial electrogram sequences [12], the DFT frequency
resolution is 0.125 Hz. At this time and frequency resolution, mea-
surement of subtle properties of atrial electrograms can be inaccu-
rate. In this study, a novel spectral estimator (NSE) with frequency
resolution dependent upon rate/period2 is compared to the DFT by
measuring electrogram spectral properties. We hypothesized that the
NSE would provide improved time resolution while maintaining
satisfactory frequency resolution for computation of CFAE spectral
parameters.

2. Method

2.1. Clinical data acquisition

Atrial electrograms were recorded in 19 patients referred to the
Columbia University Medical Center cardiac electrophysiology
laboratory for catheter ablation of AF. Acquisition of electrogram
recordings was approved by the Institutional Review Board and
they were analyzed retrospectively for this study. Nine patients had
clinical paroxysmal AF with normal sinus rhythm as their baseline
cardiac rhythm. AF was induced by burst pacing from the coronary
sinus or from the right atrial lateral wall, and continued for at least
10 min prior to data collection. Ten other patients had longstanding
persistent AF without interruption for several months to many
years prior to catheter mapping and ablation. Bipolar atrial map-
ping was performed using a NaviStar ThermoCool catheter, 7.5F,
3.5 mm tip, with 2 mm spacing between bipoles (Biosense-Web-
ster Inc., Diamond Bar, CA, USA). Electrograms were acquired using
the General Electric CardioLab system (GE Healthcare, Waukesha,
WI), and filtered at acquisition from 30–500 Hz with a single-pole
bandpass filter to remove baseline drift and high frequency noise.
The filtered signals were sampled at 977 Hz and stored. Although
the bandpass high end was slightly above the Nyquist frequency,
negligible signal energy resides in this range [13]. Only signals
identified as CFAE by two cardiac electrophysiologists were
included for retrospective analysis. CFAE recordings were obtained
from two sites outside the ostia of each of the four pulmonary
veins. Recordings were also obtained at two left atrial free wall
sites, one in the mid-posterior wall, and another on the anterior
ridge at the base of the left atrial appendage.

2.2. CFAE data structure

A total of 204 recording sequences of length greater than 16 s,
acquired from both paroxysmal and longstanding persistent AF
patients, and all meeting the criteria for CFAE, were selected for
analysis. DFT and NSE power spectra were computed in the standard
electrophysiologic frequency range from 3–12 Hz. The time windows
over which spectra were calculated were 8192, 4096, 2048, 1024, and
512 sample points (approximately 8s, 4s, 2s, 1s, and 0.5 s). Binary step
changes in window length were used so as to be maximally
compatible with the DFT method. The upper limit of 8192 points is
considered the optimal time window [12]. The lower limit of 512
sample points is the theoretical minimum to analyze 3 Hz content,

which has a period of 977 samples per second/3 per second¼325
sample points for this data. The next binary step at 256 sample points
would not extend the entire period of 3 Hz frequency content.
Rectangular windowing was used to extract segments for analysis,
as unlike other window functions, it does not diminish frequency
resolution [14]. For the DFT calculation, the 4096, 2048, 1024, and 512
sample point analysis windows were padded with zeros to 8192
points. For conformity, all DFT and NSE analyses were done using the
same 8192 sample point intervals of data. Thus, at the 4096 time
resolution level, spectra were generated for two successive 4096 point
windows and then averaged, and similarly four 2048 point windows,
eight 1024 point windows, and sixteen 512 point windows were
averaged for the 2048, 1024, and 512 time resolution levels,
respectively.

2.3. Digital power spectra

The DFT power spectrum was constructed using a radix-2
implementation [15]. The NSE power spectrum was constructed
as follows [13]. In all equations, underscore denotes a vector, a
capital letter signifies a matrix, and the first subscript gives the
dimensionality of the vector or matrix. A vector ew of dimension
w�1 was calculated by averaging n successive segments of an
N�1 dimensional signal xN , where xN is a CFAE signal normalized
to mean zero and unity variance prior to analysis. Each segment
xw; iof this signal, of dimension w�1, is used for averaging:

ew ¼ 1
n
∑
i
xw;i; i¼ 1 to n ð1Þ

where:

xN ¼

xw; 1

xw; 2

⋮
xw; n

2
66664

3
77775 ð2Þ

The process described by Eqs. (1) and (2) is illustrated in Fig. 1.
A selected CFAE, signal x, is graphed from discrete sample point 1 to
1000. Let w¼250 sample points. Segments i¼1–4 are noted below x,
and they are the signal segments xw;i for w¼250. When the four
segments shown are averaged together, the result is depicted at the
bottom of the figure. Any periodicity at w¼250 will be reinforced in
the sum, while random components will diminish. Even in the
presence of phase jitter, quasi-periodic components will be rein-
forced [16]. For a signal xN of length N, the total number of signal
segments, and therefore the total number of summations used for

Fig. 1. Process of segment extraction and addition using a complex fractionated
atrial electrogram. When the separate segments of length w are added, the result of
summation is shown by the trace at the bottom of the figure.
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ensemble averaging is given by

n¼ int
N
w

ð3Þ

with ‘int’ being the integer function (the real number is rounded
down). From Eqs. 1–3, the ensemble average for any segment length
w can be written in compact form

ew ¼ 1
n
UUw�N UxN ð4Þ

where:

Uw�N ¼ Iw�w Iw�w ⋯ Iw�w
� � ð5Þ

with Uw�N being a w�N dimensional summing matrix and Iw�w are
w�w dimensional identity submatrices used to extract the signal
segments from xN . Identity matrices are sparse, and the total number
of nonzero summations from Eqs. (4) and (5) are n, not N, as in Eq.
(1); hence the scale term is 1/n in this equation. From Eq. 3, if N/w is
not an integer, then the right edge of Uw�N is padded with 0s [13].

The relationship between segment length w used for averaging,
which is a period, and frequency f is given by

f ¼ sample rate
w

ð6Þ

For any particular segment length w, the power in the ensemble
average is

Pw ¼ 1
w
UeTw Uew ð7aÞ

Pw ¼ 1
n2w

∑
i
∑
j
xTw;i Uxw;j i¼ 1 to n; j¼ 1 to n ð7bÞ

Pw ¼ 1
nN

UxTN UUN�w UUw�N UxN ð7cÞ

for signal segments xw;i and xw;j, where the transpose of the
summing matrix is given by

UT
w�N ¼UN�w ð8Þ

Eq. (7a) is based upon the definition of power—it is the sum of
squares of each element of ew divided by the total number of such
summations w. Eq. (7b) results from substituting Eq. (1) into Eq.
(7a), and Eq. (7c) results from substituting Eq. (4) into Eq. (7a). Eq.
(7b) is similar to computing the average of the estimated auto-
correlation function for all lags 1w; 2w ; …; nw; which is given by

ravðwÞ ¼ 1
nN

∑
k
xTN UxN;f ¼ k Uw k¼ 1 to n ð9aÞ

ravðwÞ ¼ 1
n2w

∑
k
∑
i
xTw;i � xw;iþk i¼ 1 to n; k¼ 1 to n ð9bÞ

where xN;f ¼ k Uwis shifted in phase from xN by f¼ kUw and Eq. 9b
is computed over an interval 2N. In Fig. 2, an example CFAE is
shown in the top graph, and lags in its autocorrelation function are
shown in the lower graph when using w¼125 sample points
(f¼7.8 Hz) for illustration. The value of the autocorrelation func-
tion at all lags 1w; 2w ; …; nw; is averaged to form ravðwÞ in Eq.
(9a) and (9b). Short segments xw;i in Eq. (9b) are considered as a
first approximation to be mean zero and unity variance, so that the
autocorrelation and autocovariance functions were considered to
be equivalent and could be used interchangeably. To implement
Eq. (9a) in computer software, the following line of software code
can be used

ravðwÞ ¼ ravðwÞ þ xðiÞUxðiþ kwÞ i¼ 1 to N; k¼ 1 to n ð10Þ

where xðiÞ is a discrete sample point, and xðiþ kwÞ is a sample
point shifted by kw for lags 1w; 2w ; …; nw;. This spectral
estimator would then be plotted as ravðwÞ=N versus the frequency
f ¼ sample rate=w. For completeness, in the Appendix it is shown
that the mean squared error function is equivalent to the auto-
correlation function as a spectral estimator.

In the above derivation, the NSE power spectrum was formed
by modeling the signal autocorrelation function. Like the NSE
estimator, the DFT power spectrum is also formed by modeling the
signal autocorrelation function. Based on the Wiener–Khinchin
theorem, the power spectrum of signal xN is given by the Fourier
transform of its autocorrelation function

Sðf Þ ¼ 1
N
∑
f
ðxN UxN;fÞe�2πjff ð11aÞ

Sðf Þ ¼ 1
nw

∑
i
∑
w

ðxTw;i � xw;iþ1Þe�2πjfw i¼ 1 to n ð11bÞ

where S is the power spectral density, xN UxN;f is the autocorrela-
tion function with lag f, and Eq. 11b is similar to Eq. (9a) and (9b)
for one lag (k¼ 1), with lag symbol f being replaced byw, and with
nw¼N. The DFT power spectral density calculation thus models
the autocorrelation function by sinusoidal decomposition. While
the DFT incorporates a general basis that is sinusoidal, the NSE
basis is data-driven. To show this, signal xN can be projected into
NSE space using the following N � N transformation matrix [13]

TN�NðwÞ ¼ UN�w UUw�N ð12Þ

¼

Iw Iw ::: Iw
Iw Iw ::: Iw
⋮
Iw Iw ::: Iw

2
6664

3
7775

Signal xN can then be decomposed using the linear transformation

aNðwÞ ¼ 1
n
TN �NðwÞUxN ð13Þ

where aNðwÞ are a set of basis vectors of dimension N�1. The
orthogonality of any two basis vectors with periods w¼ y and
w¼ z is given by

aT
NðyÞUaNðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½aT
NðyÞUaNðyÞ�½ðaT

NðzÞUaNðzÞ�
q ¼ cos θ ð14Þ
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Fig. 2. Autocorrelation function at lags. Top panel: CFAE signal. Lower panel:
autocorrelation function with a lag of 125 sample points.
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where from Eq. (13), the numerator in Eq. (14) can be rewritten as

aT
NðyÞUaNðzÞ ¼

1
nðyÞnðzÞ xTN UTT�NðyÞUTN�NðzÞUxN ð15Þ

and nðyÞand nðzÞare values of n (Eq. (3)) for w¼ y and w¼ z. As the
angle θ-901 (left-hand-side in Eq. (14)-0) it is indicative of more
nearly orthogonal vectors. Orthogonality is exact when aT

NðyÞU
aNðzÞ¼0 (Eq. (14)), or equivalently when the inner product of each
row in TN�NðyÞ with the corresponding column in TN�NðzÞ equals
zero (Eq. (15)). Orthogonality is approximate when y and z have a
distant integer relationship over N, so that aT

NðyÞUaNðzÞin Eq. (14),
and the inner products of corresponding rows and columns of
TT�NðyÞ and TN�NðzÞ in Eq. (15) are small but nonzero.

The transformation matrix TN�NðwÞ in Eqs.(12) and (13) acts to
decompose the signal into periodic ensemble averages. An exam-
ple is shown in Fig. 3. The CFAE is from the posterior left atrial free
wall in a persistent AF patient (panel A). The NSE spectrum is
shown in panel B. The DF, which is the tallest fundamental spectral
peak in the range of interest [17,18], occurs at 7.08 Hz (w¼138 for
977 Hz sampling rate), noted by *. A minimum point at 7.29 Hz
(w¼134) is noted by **. The basis vector aNðwÞ from Eq. 13,
consisting of repeated ensemble averages, is shown in panel C for
the DF, while for the minimum point at ** it is shown in panel D to
the same scale. There is substantial power in the basis vector of
panel C, because it aligns with CFAE deflections (panel A), while
there is much less power in the basis vector of panel D.

2.4. NSE frequency resolution

The frequency resolution of the NSE for any particular segment
length w¼ k, where k is an integer, can be described as:

f rðkÞ ¼ rate
k

� rate
kþ 1

ð16Þ

Eq. 16 can be rewritten as:

f rðkÞ ¼ rate � 1
k
� 1

kþ 1

� �

¼ rate � 1

k2 þ k

� �
ð17Þ

For w¼ k large

f rðwÞ � rate
w2 ð18Þ

Thus the NSE frequency resolution is proportional to rate=period 2. It
improves as the period w¼ k increases (smaller value of f rðwÞ), i.e., at
lower frequency values. The NSE estimator contains a maximum of
N=2 spectral points (an average must contain at least two segments),
the same as for the DFT. Therefore the NSE and DFT estimators have
equal frequency resolution overall. Although time duration does not
directly affect the NSE frequency resolution (Eq. (18)) it may indirectly
affect resolution, because as time duration diminishes, the number of
signal segments n from Eq. (3) used to form the ensemble average
estimate decreases. The cruder estimate would be anticipated to
somewhat diminish accuracy.

2.5. Improved NSE time resolution

It was hypothesized that by forming the ensemble average
estimate from longer intervals, and then projecting the estimate
onto shorter data intervals, the NSE time resolution could be
extended. From Eq. (7a)–(7c), the approximate power over a time
duration consisting of a reduced number of signal segments ℓon
is given by

〈Pw〉¼ 1
wUℓ

∑
i
ðeTw Uxw;iÞ; i¼ 1 to ℓon

¼ 1
wUℓ

eTw ∑
i
xw;i; i¼ 1 to ℓon ð19Þ
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Fig. 3. Construction of basis vectors using the NSE transform. *—the basis vector for the dominant frequency. **—the basis vector for a minimum point on the spectrum. The
dominant frequency basis vector (panel C) is of much larger amplitude and therefore greater power as compared with the basis vector for the minimum point (panel D).

E.J. Ciaccio et al. / Computers in Biology and Medicine 43 (2013) 1573–15821576



Using Eq. (19), the local frequency content, which is estimated
from the average computed over ℓ segments, is compared to the
global frequency content, i.e., the ensemble average ew computed
over n segments. In this study, using ensemble averages computed
from 2048 points, power spectra were estimated for ℓ¼1024 and
ℓ¼512 points using Eq. (19).

2.6. Comparison of estimators using repeating electrogram patterns

For comparison of NSE versus DFT spectral estimators, a repetitive
electrogram pattern was constructed. The pattern was extracted from
a CFAE at a random point and with randomwindow size, and adjusted
to mean zero and a standard deviation of 0.08, which is on the order of
2� the average standard deviation of the CFAE signals acquired for
this study prior to their normalization. The pattern was then repeated
to a total length of N¼8192 discrete sample points. The 204 CFAE
themselves were used as interference having unknown frequency
content, by adding the repeating electrogram pattern to each CFAE. It
was determined whether the frequency of the repeating electrogram
pattern could be detected as the DF in the power spectrum of the
resulting signal. Jitter was also introduced by randomly shifting each
repeating electrogram pattern by up to 75 sample points (approxi-
mately 75ms) to simulate phase noise. The DF was measured for 20
different electrogram patterns with phase noise using the DFTand NSE
spectral estimators. Estimates were considered satisfactory when the
absolute error was less than 0.5 Hz.

Examples of a repeating electrogram pattern added to a CFAE are
shown in Fig. 4. The top panel is graphed with sample points 1–500 of
a CFAE from the left superior pulmonary vein ostium in a persistent AF
patient (black trace). Overlapping it is the same CFAE with a repeating
electrogram pattern added having a period of approximately 170
sample points or 5.75 Hz in frequency (red trace). The cycles of
repeating pattern are labeled from a–d at the large downward
deflection, which is a prominent fiduciary point. These downward
deflections change from one cycle to the next due to the level of
interference from the added CFAE. The horizontal arrows show equal
intervals along the traces. The repeating pattern has been shifted by
random jitter in segment b–c versus segment c–d, so that the periods
between b–c and c–d are unequal. The cycle length of b–c is longer
than c–d. In the lower panel of Fig. 4, a CFAE from the left superior
pulmonary vein ostium in a paroxysmal AF patient is graphed from

sample points 1–1000. Overlapping it in red is a repeating electrogram
pattern, this time having a period of approximately 250 sample points
or 4 Hz in frequency, with the CFAE acting as interference. Here again,
as in the top panel, cycles a–d are unequal in length due to the phase
jitter introduced to the repeating electrogram pattern. For 20 trials, the
error was calculated as the absolute difference in the DF measured
from the power spectrum versus the actual frequency of the repeating
electrogram pattern. Significant differences in mean error values for
DFT versus NSE measurements were determined using the paired t-
test (SigmaPlot 2004 for Windows Ver. 9.01, Systat Software, Chicago)
at the po0.05 level.

2.7. Real data comparison of the spectral estimators

Three spectral properties were measured from the real data to
compare the DFT versus NSE spectral estimators [6]. The dominant
frequency (DF), which is reflective of the atrial activation rate [10,11],
was determined in the physiologic range of interest, 3–12 Hz [16].
The second spectral property that was measured was the dominant
amplitude (DA), defined as the amplitude of the dominant spectral
peak [6]. It is proportional to the power contained in the funda-
mental frequency component of the signal, and therefore to the
proportion of tissue undergoing electrical activation at the cycle
length given by the DF. The third measurement, the mean spectral
magnitude (MP), reflects the characteristics of all frequency compo-
nents rather than just the dominant frequency [6]. The MP is related
to the noise floor, which itself is dependent upon the degree of
randomness in the electrical activation pattern. Measurements were
made at time resolutions of 8 s, 4 s, 2 s, 1 s, and 0.5 s.

The DA, DF, and MP were measured and compared for paroxysmal
versus persistent CFAE recordings. In accord with prior analyses [6], for
the MP measurement, recordings from all locations were compared
(114 persistent and 90 paroxysmal CFAE). Also in accord with prior
analyses [6], for the DA and DF measurements, only recordings from
the pulmonary vein ostia were compared (76 persistent and 60
paroxysmal CFAE recordings). The DF was detected automatically in
computer software as the tallest spectral peak in the range 3–12 Hz,
excluding harmonics. The unpaired t-test was used to compare the
means of paroxysmal versus persistent AF data (MedCalc ver. 9.5,
2008, MedCalc Software bvba, Mariakerke, Belgium), with the po0.05
level indicating significance.

2.8. Synthetic data comparison of the spectral estimators

As an additional test of the performance of the NSE versus DFT
estimators, a synthetic fractionated electrogram was constructed
and analyzed. It consisted of three additive components, simple
periodic geometrical shapes, with frequencies of 3.26 Hz, 4.77 Hz,
and 6.98 Hz. Random noise with a standard deviation of 2.5 milli-
volts, approximately 50� the standard deviation of the CFAE, was
added to the synthetic fractionated electrogram. It was then
determined whether or not the three largest peaks in the NSE
and DFT spectra in the range 3–12 Hz, excluding harmonics,
coincided with the frequencies of the additive synthetic compo-
nents. This process was repeated for 15 trials with a different
random noise used on each trial.

3. Results

In Table 1, the average estimation error for detecting the repeating
electrogram pattern over 20 trials is shown for DFT versus NSE
spectral estimators. The absolute values are given in Hertz. At all
levels from 8192 through 512 sample points of time resolution, the
NSE estimator was more accurate than DFT. Thus for the five
resolution levels 8 s, 4 s, 2 s, 1 s, and 0.5 s, the error in detecting
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Fig. 4. Construction of a synthetic periodic component. (A) Persistent AF. (B)
Paroxysmal AF. Black traces—the interference signal. Red traces—repeating electro-
gram pattern with interference added. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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repeating electrogram patterns was significantly less when using the
NSE estimator as compared with DFT (po0.001).

Tables 2–4 show results for detecting differences in power spectral
parameters for paroxysmal versus persistent AF. In Table 2, mean
values of the DA parameter are shown. At all time resolutions when
using the NSE spectrum for calculation, the DA is greater in persistent
AF (po0.0001), indicating that it is often more predominant as
compared with other spectral components in the persistent AF
spectra, versus paroxysmal AF spectra where the DF is less dominant.
In Table 3, the mean DF is higher in persistent as compared with
paroxysmal AF for all data. The significance level is higher for NSE at
the 8192, 1024, and 512 levels and is similar in NSE and DFT at the
4096 and 2048 levels. In Table 4, the mean MP is larger in paroxysmal
as compared with persistent AF for all data. There is a greater
significant difference for the NSE method at the 2048, 1024, and 512
levels. The DFT and NSE estimators have similar significant differences
at the 8192 and 4096 levels (po0.0001). The larger DA, higher DF, and
lower MP in persistent as compared with paroxysmal AF data are in
accord with the known properties of both types of AF, i.e., persistent
AF activation patterns tend to be more regular and stable, and have a

faster rate as compared with paroxysmal AF activation patterns
[4,5,16].

Fig. 5A shows the synthetic geometric shapes used to test the NSE
and DFT estimators. At the top of the panel are the individual shapes,
shown offset. At the bottom of the panel is the combined synthetic
pattern. Fig. 5B shows the NSE and DFT spectra for the noiseless
synthetic fractionated electrogram. For reference, the frequencies of
the individual components are shown as vertical lines. The highest
spectral peaks coincide with the actual synthetic component frequen-
cies for both estimators. For both estimators, there is also a tall
harmonic peak—the second harmonic of the 3.26 Hz component,
which is labeled. For the DFT estimator, the 3.26 Hz and 4.77 Hz
frequency peaks are slightly misaligned while for the NSE estimator,
the 6.98 Hz peak is slightly misaligned. Overall, the top three spectral
peaks in the range 3–12 Hz, excluding harmonics, coincided with the
three synthetic components in 14/15 trials for the NSE estimator, and
for 9/15 trials for the DFT estimator. An example is shown in Fig. 6. The
top three peaks excluding harmonics coincide with the synthetic
component frequencies for the NSE spectrum (panel A). Only two of
the top three peaks excluding harmonics coincide with the synthetic
component frequencies for the DFT spectrum (panel B), where again
the actual frequencies of the synthetic components are denoted with
vertical lines for reference.

4. Discussion

4.1. Summary

In the study, details concerning a novel spectral estimator, or NSE,
were described. The NSE and DFT estimators were compared to
analyze fractionated atrial electrograms acquired from paroxysmal
and persistent AF patients. To form the power spectrum, the NSE

Table 1
Error in detecting repeating electrogram pattern (Hz).

Time DFT NSE P

8192 0.28570.346 0.01070.019 Po0.001
4096 0.33170.353 0.03270.021 Po0.001
2048 0.40770.413 0.12570.258 Po0.001
1024 0.53770.490 0.11070.062 Po0.001
512 0.89670.736 0.19170.223 Po0.001

Error values are given as mean7standard deviation in units of Hertz, for analysis
time windows of 8192 to 512 sample points (approximately 8 s to 0.5s). P is¼the
significance level using the paired t-test.

Table 2
Real data—dominant amplitude (millivolts).

Time Per—DFT Par—DFT P Per—NSE Par—NSE P

8192 0.849+0.375 0.688+0.297 ¼0.0074 1.842+0.606 1.466+0.297 o0.0001
4096 0.567+0.273 0.446+0.195 ¼0.0044 1.742+0.524 1.407+0.258 o0.0001
2048 0.349+0.158 0.270+0.104 ¼0.0011 1.596+0.391 1.310+0.200 o0.0001
1024 0.212+0.098 0.161+0.064 ¼0.0007 1.137+0.299 0.937+0.179 o0.0001
512 0.118+0.051 0.104+0.038 NS 0.772+0.191 0.656+0.131 ¼0.0001

Per¼persistent AF data, Par¼paroxysmal AF data, and P¼the significance level using the unpaired T-test.

Table 3
Real data—dominant frequency (Hertz).

Time Per—DFT Par—DFT P Per—NSE Par—NSE P

8192 6.253+0.919 5.623+1.126 ¼0.0005 6.242+0.905 5.563+1.090 ¼0.0001
4096 6.275+0.946 5.405+1.005 o0.0001 6.188+0.943 5.795+1.153 ¼0.0305
2048 6.299+1.011 5.556+1.304 ¼0.0003 6.385+0.958 5.913+1.233 ¼0.0132
1024 6.177+1.185 5.862+1.500 NS 5.887+0.946 5.524+0.957 ¼0.0288
512 6.387+1.311 6.116+1.753 NS 6.586+1.242 6.044+1.425 ¼0.0193

Per¼persistent AF data, Par¼paroxysmal AF data, and P¼the significance level using the unpaired t-test.

Table 4
Real data—mean spectral profile (millivolts).

Time Per—DFT Par—DFT P Per—NSE Par—NSE P

8192 0.258+0.071 0.305+0.068 o0.0001 0.342+0.105 0.405+0.076 o0.0001
4096 0.243+0.072 0.285+0.058 o0.0001 0.364+0.102 0.428+0.078 o0.0001
2048 0.266+0.074 0.306+0.062 ¼0.0001 0.386+0.095 0.457+0.077 o0.0001
1024 0.340+0.080 0.383+0.073 ¼0.0001 0.438+0.103 0.505+0.080 o0.0001
512 0.432+0.082 0.463+0.077 ¼0.0064 0.471+0.094 0.505+0.063 ¼0.0036

Per¼persistent AF data, Par¼paroxysmal AF data, and P¼ the significance level using the unpaired t-test.
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averages the autocorrelation function at lags, while the DFT uses a
sinusoidal approximation to model the autocorrelation function.
Differences in modeling the autocorrelation function for power
spectrum formation contribute to the differing properties of the DFT
and NSE estimators. In contrast to the DFT frequency resolution, which
is proportional to rate=time duration, the NSE frequency resolution is
proportional to rate=period2. Power spectral equations similar to that
of the NSE were derived from the average autocorrelation and mean
squared error functions.

The NSE time resolution at 1024 and 512 sample points (1 s and
0.5 s, respectively) was improved using a temporally globalized
ensemble average model over 2 s, which was projected onto
temporally localized data (Eq. 19). The global model contained
local information, which became evident by projection onto the
shorter electrogram interval containing localized data. The max-
imum error in detecting a repeating electrogram pattern was
found to be 0.89670.736 Hz for DFT versus 0.19170.223 Hz for
NSE, which occurred for 0.5 s time windows (po0.001; Table 1).
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Fig. 5. Construction of the synthetic CFAE from three geometric components. (A). Time series components shown offset and combined. (B). NSE and DFT frequency spectra.
Vertical lines denote the frequencies of the three additive components used to construct the synthetic fractionated electrogram.
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range of 3–12 Hz is shown. Vertical lines denote the frequencies of the three additive components used to construct the synthetic fractionated electrogram.
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The NSE had significantly improved spectral qualities compared
with the DFT across the range of time resolutions used for analysis,
from 8 s to the theoretical minimum time interval for analysis of
0.5 s (Table 1). The NSE was also more useful to determine
significant differences in paroxysmal versus persistent CFAE spec-
tral parameters. The NSE spectra provided the best discrimination
of the DA spectral parameter in paroxysmal versus persistent AF as
compared with the DFT spectra at all time resolution levels of 8 s,
4 s, 2 s, 1 s, and 0.5 s (po0.0001). NSE spectra provided the best
discrimination of DF and MP spectral parameters at three of five
time resolution levels.

4.2. Clinical correlates

In previous work, the DA and MP spectral parameters have
been shown to be correlated to the duration of AF in months, and
to the left atrial volume of AF patients [6]. The DF spectral
parameter has also been shown to be very useful for AF patient
evaluation in the electrophysiology laboratory. For example, local
reentrant circuits may be indicated by lower DFs that coexist in
chaotic AF sequences [19]. Paroxysmal AF, but not persistent AF,
can be driven by high DF sources and a left-to-right DF gradient
[20]. A significant reduction in DF in both left and right atria, with
a loss of the left-to-right atrial gradient after ablation, is associated
with a higher probability of maintaining sinus rhythm in both
paroxysmal and persistent AF patients [21]. It is also possible to
classify paroxysmal as compared with persistent AF by detecting
subtle changes in the DF, combined with analysis of an entropy
measure [22]. Moreover, there is significant regional variation in
the DF in paroxysmal but not persistent AF [5,23].

Although recording intervals of Z2 s are necessary for reliable
DF measurement using the DFT, as has been shown in the present
study (Table 1) and elsewhere [24], spectral changes preceding
major arrhythmic events such as spontaneous termination of
paroxysmal atrial fibrillation may occur over intervals shorter
than 2 s [25]. The NSE, but not the DFT, would therefore be suited
to this purpose, since the time resolution is satisfactory down to
the theoretical limit of 0.5 s for the physiologic frequency range of
interest (Table 1). Moreover, subtle spatial gradients in DF of a few
tenths of Hertz exist away from the pulmonary veins [26], and
subtle changes in DF of a few tenths of Hertz caused by pharma-
cologic agents can also occur [27]. These changes would not be
readily measureable in patients using the DFT, which had an error
o0.5 Hz only for window segments of 2 s and greater (Table 1).
Conflicting results from DFT spectral analysis of fractionated atrial
electrograms may thus be partially explained by the lack of time
and frequency resolution. The NSE may therefore be helpful to
clarify previous findings.

As wavelet decomposition is not as commonly used for analysis
of AF electrograms as compared with the DFT, and as it estimates
different spectral properties, it was not used for comparison in the
present study. However, wavelet decomposition has been found
useful for applications including the automatic detection of local
activation times when the pattern of atrial fibrillation is complex
[28], for automated description of fractionation morphology in
atrial electrograms [29], extraction of the spatiotemporal charac-
teristics in paroxysmal AF to identify arrhythmogenic regions for
catheter ablation [30], and to predict the spontaneous termination
of paroxysmal AF and the outcome of electrical cardioversion in
persistent AF patients [31]. Thus this spectral estimator can
potentially provide complimentary information to the DFT and
NSE estimators when AF data is analyzed.

Besides application to fractionated atrial electrograms, the NSE
algorithm has been implemented for other types of data including
the study of ventricular tachyarrhythmia onset [32] and videocap-
sule image analysis that is used for screening in celiac disease [33].

In recent investigations, the spectral parameters described in this
study were used for QRST cancellation [34] and the NSE method
was implemented for heart sounds quantification [35]. Similar to
the NSE, in a prior study, heart sounds patterns have been detected
by averaging segments of the acoustic signal at different lengths w
[36]. Based on these investigations, the NSE method may be
generalizable to many types of biomedical data.

4.3. Limitations

The NSE spectrum contains subharmonics and cross-terms [6,37].
Such components can interfere with DF detection and can cause the
MP parameter to be increased. Second harmonics can be reduced in
NSE by imparting antisymmetry to the ensemble averages [6,37], but
this can diminish the power of pertinent frequency components as
well. To further reduce subharmonics and cross-terms, higher-order
harmonics should be canceled [37], the subject of future study.
Although as shown in the present study, the NSE method can account
for inexact periodicity (phase noise), other methods to measure
frequency content under such conditions may also be helpful to
analyze fractionated atrial electrograms [38,39]. In paroxysmal AF
patients, the DF is related to the degree of fractionation [40]. Therefore
the DA and MP spectral parameters may be in part dependent on
the DF.

5. Conclusions

In the presence of interference and phase noise, a repeating
electrogram pattern was found to be accurately detected to the
theoretical minimum time resolution of 0.5 s using the NSE
estimator. At all time resolution levels, the NSE method had
negligible bias and significantly reduced variance as compared
with the DFT estimator (Table 1). The NSE method was also found
useful to determine significant differences in the DA, DF, and MP
spectral parameters in paroxysmal versus persistent CFAE data.
Based on both the reduced estimation error in detecting a
repeating pattern, and the greater significant differences in real
paroxysmal versus persistent AF spectral parameters, the NSE
estimator may be useful for frequency analysis of atrial signals as
a comparative technique with respect to the traditional DFT
method, and to validate the results of the DFT. The NSE may even
be useful to provide improved frequency analysis of CFAE data at
short time resolutions, but this should be tested in a prospective
study with larger sample size.

The findings of this study suggest that the NSE method can
provide improved time resolution, which along with the better
frequency resolution [14], can result in more accurate measure-
ment of spectral properties in fractionated atrial electrogram
recordings. At the 0.5 s time resolution level, the error was still
below 0.5 Hz for the NSE estimator (Table 1). Regardless of time
window, the frequency resolution of NSE averages 0.05 Hz in the
3–12 Hz physiologic frequency band [14]. This compares with a
best time resolution of 2 s for DFT found in this study (Table 1) and
elsewhere [24], which at a sampling rate of 1k Hz corresponds to a
0.5 Hz frequency resolution. As the NSE technique is automated
without the need for manual correction, user bias is eliminated,
with no need for ad hoc parameterization and input of a priori
information, so that it is potentially applicable to real-time
analysis in the clinical electrophysiology laboratory for evaluation
of AF patients.
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Appendix

5.1. Mean Squared Error as Alternative to Autocorrelation Function
for Spectral Estimation

The mean squared error (MSE) between a signal xN and its
lagged version xN;f is approximated by

MSE� ðxN�xN;fÞT U ðxN�xN;fÞ ðA1Þ

where the right-hand-side in Eq. A1 is divided by the vector
length. If signal statistics are approximately stationary then

ðxTN;f UxN;fÞ � ðxTN UxNÞ ðA2Þ

From. Eqs.A1 and A2:

MSE� ðxTN UxNÞ�ðxTN UxN;fÞ�ðxTN;f UxNÞ þ ðxTN;f UxN;fÞ
� 2ðxTN UxNÞ�2ðxTN UxN;fÞ ðA3Þ

For segmentsxw;i having length wand segment number i, and
switching the lag variable from f to w

MSE� 2ðxTN UxNÞ �2∑
i
xTw;i Uxw;iþ1 i¼ 1 to n ðA4Þ

Eq. (A4) is similar to Eq. (9B) when k¼ 1. By replacing the index
i+1 with i+k, k¼ 1 to n in Eq. (A4), the average for all lags
1w; 2w; … nw is obtained, which can be plotted as an inverted
version of the average autocorrelation power spectrum (Eq. (9B)).
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